Loch Kemp Storage - EIA Report (Additional Information)

AI Appendix 12.1: Addendum to Loch Kemp Baseline Aquatic Surveys – Macroinvertebrates

September 2024

ash design + assessment Suite 2/3, Queens House 19 St Vincent Place Glasgow, G1 2DT

Tel: 0141 227 3388 Fax: 0141 227 3399

Email: info@ashglasgow.com Web: www.ashdesignassessment.com

TECHNICAL NOTE

Introduction

Additional Information Requirements

Following the submission of the Section 36 application for the Loch Kemp Storage Scheme (the Proposed Development), it was brought to the attention of Gavia Environmental Ltd that some of the indices and the nomenclature of macroinvertebrate taxa used in the Volume 4, Appendix 12.1: Loch Kemp Baseline Aquatic Surveys of the EIA Report were now outdated. Additionally, whilst reviewing these indices it was discovered that certain taxa had been missed from the species lists in the initial Biological Monitoring Working Party (BMWP) score calculations in error, which may have affected the initial scores.

In response to the Section 36 application for the Proposed Development, one consultee requested that Walley, Hawkes, Paisley & Trigg (WHPT) scores should be provided, as this would help to identify more subtle differences in invertebrate communities and detect changes caused by pressures other than organic enrichment.

The raw species data sheets were externally reviewed by an accredited analyst, Riverwood Ecology, with scores recalculated and a fresh set of indices provided. A comprehensive suite of biotic indices now provides BMWP scores, Proportion of Sediment-sensitive Invertebrates (PSI) index, Community Conservation Index (CCI), Empirical Proportion of Sediment-sensitive Invertebrates (EPSI) index, WHPT metric and Lotic-invertebrate Index for Flow Evaluation (LIFE).

Methodology

Macroinvertebrate Surveys

Sampling

To collect aquatic macro-invertebrates, a combination of 'kick' sampling and 'sweep' sampling were deployed on watercourses identified which had the potential to be affected by the Proposed Development.

Kick sampling was conducted on riverine survey locations using the standard Scottish Environment Protection Agency (SEPA) / Environment Agency kick sample method. A three-minute kick sample was conducted in riffled areas, moving within the river to account for differences in substrate and habitat types. During each kick sample the net was held downstream of the surveyor, with its bottom edge in contact with the substrate. The surveyor kicked and dislodged the substrate, moving slowly backwards, and in an upstream direction. Invertebrates dislodged from the substrate were washed downstream and trapped in the net. This was followed by a one-minute manual search in which substrate too large to dislodge during the initial threeminute sample were over-turned and examined. To account for surface macroinvertebrate presence a further one-minute sweep was conducted in the shallow margins and across the surface of the river.

In lentic water systems such as Loch Kemp, Loch Ness, Loch Cluanie, Loch Pàiteag and Lochan a' Choin Uire, sweep sampling was the preferred method of sampling. This relied on a disturbance of the substrate and then a sweeping like motion in a figure of eight of the pond net through the water column to collect the sample (Chadd, 2010).

All macroinvertebrate samples were collected using a standard Freshwater Biological Association pond net (mesh diameter $1.0 \times 1.0 \text{ mm}$); which was disinfected with Virkon S prior to and after use.

Invertebrates and substrate trapped in the pond net or collected during the manual search were stored in a labelled sample bucket (with a paper sample identification label also added to the sample container for security) for later extraction. The sample was fixed with bioethanol prior to analysis.

Analysis

Macroinvertebrate identification and indices compilation was conducted on several biotic score indexes.

Biological Monitoring Working Party (BMWP) measures the biological quality of rivers using invertebrates as indicators on five scores from: Very good; Good; Moderate; Poor and Very poor. The score related to the pollution tolerance of an invertebrate assemblage, and thus the biological quality of the river. Pollution sensitive families score higher than pollution tolerant families. The cumulative score of assigned values of species provides an indication of biological water quality.

Proportion of Sediment-sensitive Invertebrates (PSI) index measures the sedimentation impacts on watercourses based on the conditions fauna are adapted to. This is based on five categories: Heavily sedimented; Sedimented; Moderately sedimented; Slightly sedimented; and Minimally sedimented.

The Community Conservation Index (CCI) is an expression of conservation values and accounts for community richness and the relative rarity of macroinvertebrate species. Each species is assigned a conservation score of 1 - 10 based on a number of parameters ranging from 1 (Very common) to 10 (Red data book 1, Endangered). The sum of the conservation score is calculated and divided by the number of individuals contributing to mean CCI score. Scoring ranges from Low conservation value (conservation score of 0-5) to High conservation value (conservation score of >20).

Empirical Proportion of Sediment-sensitive Invertebrates (EPSI) index measures the sedimentation from fine sediments based on a scale from Dominated by fine sediment (0 score) to Minimal amounts of fine sediments (100 score).

Average Score Per Taxon (ASPT) is derived from the WHPT index and is calculated by dividing the total WHPT score by the Number of Scoring Taxa Present (NTAXA).

Lotic-invertebrate Index for Flow Evaluation (LIFE) assesses the flow conditions using macroinvertebrates, each assigned a LIFE score. The score for each taxa is added together and the total is divided by the number of scoring taxa/species

Results

In total, fourteen loch survey locations and thirteen riverine survey locations were investigated for the suitability of performing kick samples to collect aquatic invertebrates. Marginal areas on Loch Kemp, Lochan a' Choin Uire, Loch Cluanie, Loch Pàiteag and Loch Ness were examined for their suitability for performing sweep samples. Kick sampling was carried out at survey locations on the Allt a' Chinn Mhonaich, Allt an t-Sluichd, Allt Leachd Gowerie and Allt Paiteag.

Loch sampling was undertaken in July and September 2022 on all lochs within the site boundary, along the shoreline margins. Riverine samples were collected at strategic locations during September 2022. Macroinvertebrate samples were collected at locations likely to be affected by the Proposed Development and at 'control' locations either upstream of likely affected areas or outwith the site boundary. All samples were collected in areas which were suitable for safe access and had the ability to support aquatic invertebrates. Samples were sent off for professional analysis and identified to species level where practical to do so.

Updated biotic indices were calculated by Riverwood Ecology in 2024, following the submission of the Section 36 Application in November 2023. The sample from survey location K_L11 has been omitted from the results due to an issue with data loss, however there are three other survey locations within Lochan a' Choin Uire which give a comprehensive representation of the species present.

Results from Loch Aquatic Macroinvertebrate Samples are displayed in **Table 1** below. Results from Riverine Aquatic Macroinvertebrate Samples are displayed in **Table 2** below. Results and Survey Locations are also displayed in **Appendix A - Figure 5.0**.

A full taxa list (species) for loch and riverine species is provided in **Appendix B** and **Appendix C**.

Table 1. Loch Aquatic Macroinvertebrate Samples

	K_L1	K_L2	K_L3	K_L4	K_L5	K_L6	K_L7	K_L8	K_L9	K_L10	K_L12	K_L13	K_L14	K_L15
Piotic Indox	Loch Kemp	Loch Kemp	Loch Kemp	Loch Kemp	Loch Pàiteag	Loch Pàiteag	Loch Pàiteag	Lochan a' Choin Uire	Lochan a' Choin Uire	Lochan a' Choin Uire	Loch Ness	Loch Ness	Loch Ness	Loch Clu- anie
BIOLIC INDEX	NH 46775	NH 47239	NH 47232	NH 46589	NH 47494	NH 47323	NH 47428	NH 46137	NH 46048	NH 45988	NH 45665	NH 45333	NH 45200	NH 47505
	16856	16272	16435	16342	15664	15582	15456	16459	16424	16415	16909	16555	16406	16392
	04/08/2022	04/08/2022	04/08/2022	23/09/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	29/07/2022	28/07/2022	28/07/2022	04/08/2022
BMWP (TL1)	76	72	78	75	54	85	91	77	46	95	50	56	91	61
NTAXA (TL1)	13	12	13	12	9	13	16	13	9	16	9	9	13	10
ASPT (TL1)	5.85	6.00	6.00	6.25	6.00	6.54	5.69	5.92	5.11	5.94	5.56	6.22	7.00	6.10
PSI (TL5)	25.00	58.33	75.00	66.67	18.18	46.67	15.38	21.43	10.00	50.00	62.50	100.00	84.21	50.00
PSI(FAM) (TL3)	33.33	50.00	57.89	66.67	20.00	33.33	16.00	20.00	10.00	50.00	62.50	81.82	82.35	25.00
E-PSI (TL5))	40.54	90.44	83.08	94.17	0.00	69.44	36.86	50.51	0.00	82.74	84.39	100.00	100.00	80.00
E-PSI (FAM)	53.10	100.00	91.21	89.26	0.00	55.86	26.61	30.94	0.00	71.12	89.24	100.00	100.00	36.53
CCI (TL5)	5.25	4.50	4.88	5.00	4.00	6.43	5.40	7.00	1.67	4.50	4.50	4.50	4.29	4.80
WHPT (TL2)	75.6	77.4	83.1	79.3	43.7	86.6	76.9	72	43.2	92.6	51.4	57.4	96.4	46
NTAXA (TL2)	13	13	14	13	10	14	17	13	10	17	9	9	14	10
ASPT (TL2)	5.82	5.95	5.94	6.10	4.37	6.19	4.52	5.54	4.32	5.45	5.71	6.38	6.89	4.60

Table 2. Riverine Aquatic Macroinvertebrate Samples

	K_R1	K_R2	K_R3	K_R4	K_R5	K_R6	K_R7	K_R8	K_R9	K_R10	K_R11	K_R12	K_R13
Piotic Index	Allt a' Chinn Mhonaich	Allt Paiteag	Allt Paiteag	Allt Paiteag	Allt Leachd Gowerie	Allt Leachd Gowerie	Allt Leachd Gowerie	Allt a' Chinn Mhonaich	Allt a' Chinn Mhonaich	Allt an t- Sluichd	Allt an t- Sluichd	Allt Paiteag	Allt Paiteag
DIOLIC ITILIEX	NH 45096	NH 47244	NH 47303	NH 47413	NH 46745	NH 46774	NH 46950	NH 45929	NH 45556	NH 46779	NH 46798	NH 47848	NH 47817
	16197	16411	16408	16420	15710	15484	15046	15702	16050	16878	16923	16140	15696
	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022
BMWP (TL1)	50	25	67	38	81	49	60	22	98	92	71	52	85
NTAXA (TL1)	8	5	11	6	13	10	9	5	15	15	12	10	14
ASPT (TL1)	6.25	5.00	6.09	6.33	6.23	4.90	6.67	4.40	6.53	6.13	5.92	5.20	6.07
LIFE (TL5)	8.83	8.50	9.25	8.50	8.29	7.57	8.60	7.33	8.53	8.29	7.82	8.22	7.80
LIFE(FAM) (TL2)	8.00	7.00	7.13	8.25	7.45	6.86	7.86	7.00	7.92	7.38	7.10	7.25	7.82
PSI (TL5)	100.00	75.00	91.67	100.00	90.48	65.00	100.00	66.67	83.72	82.93	74.29	80.00	77.78
PSI(FAM) (TL3)	81.82	60.00	82.35	100.00	82.35	38.46	100.00	50.00	77.78	83.33	59.09	70.59	81.82
E-PSI (TL5))	100.00	100.00	100.00	100.00	100.00	86.41	100.00	67.11	87.22	91.99	87.29	96.44	71.84
E-PSI (FAM)	87.88	99.00	100.00	100.00	96.54	93.30	100.00	64.44	83.71	94.49	91.27	96.14	93.57
CCI (TL5)	14.17	7.50	20.00	5.00	12.14	5.57	6.75	5.00	9.67	10.63	12.08	12.00	4.80
WHPT (TL2)	53.7	33.8	83.7	42.2	86.7	55.5	64.5	29.7	104.8	109.9	89.6	74	86.9
NTAXA (TL2)	8	6	12	7	13	10	9	6	15	16	14	12	14
ASPT (TL2)	6.71	5.63	6.98	6.03	6.67	5.55	7.17	4.95	6.99	6.87	6.40	6.17	6.21

Table 3. Glossary of Indices

Glossary:
NTaxa - Count of WHPT/BMWP family taxa in the sample
BMWP - Biological Monitoring Working Party score
ASPT - Average score per (BMWP/WHPT) taxon
WHPT - Whalley-Hawkes-Paisley-Trigg index
DEHLI - Drought Effect of Habitat Loss on Invertebrates
LIFE - Lotic-Invertebrate index for Flow Evaluation
PSI - Proportion of Sediment-sensitive Invertebrates
E-PSI - Empirically Weighted Proportion of Sediment-sensitive Invertebrates Index
CCI - Community Conservation Index (TL5 only)
TL1 - Taxonomic Level 1 - The 78 "BMWP family" level taxa in RIVPACS IV
TL2 - Taxonomic Level 2 - The 112 "WHPT family" level taxa in RIVPACS IV
TL3 - Taxonomic Level 3 - 'All Families'
TL5 - Taxonomic Level 5 - The 417 "WFD Species" level taxa in RIVPACS IV (including component members of species groups)

Table 4. Score Categories for BMWP, PSI and CCI

Key: BMWP Score Category Interpretation			SI/EPSI Score Category Interpretation	CCI Score Category Interpr				
0 - 10	Very poor	0 - 20	Heavily sedimented	0 - 5	Low conservatio			
11 – 40	Poor	21 - 40	Sedimented	>5 - 10	Moderate conserva			
41 – 70	Moderate	41 - 60	Moderately sedimented	>10 - 15	Fairly high conserva			
71 – 100	Good	61 - 80	Slightly sedimented	>15 - 20	High conservatio			
> 100	Very good	81 - 100	Unsedimented	>20	Very high conserva			

-	 		
ല	ТΙ	r e 1	
-		9	

on value

ation value

ation value

on value

ation value

Discussion

Loch Sampling

In total, fourteen locations were sampled with surveys undertaken in Loch Kemp, Loch Pàiteag, Lochan a' Choin Uire, Loch Cluanie and the Loch Ness shoreline during July 2022.

Macroinvertebrate samples collected from Loch Kemp across four survey locations produced twenty-seven family groups. BMWP scoring was reflective of this deeming Loch Kemp "Good" across the four survey locations. WHPT scores ranged from 75.6 (K_R1) – 83.1 (K_L3). Community Conservation Index (CCI) scores for the Loch Kemp survey locations were deemed of *low conservation value* to *moderate conservation value*. The taxa collected were mainly generalists with the most abundant family groups across all four survey locations being that of *Oligochaeta* (aquatic and terrestrial worms), *Nemouridae* (Stoneflies) and *Corixidae* (Water boatman). In addition, the samples also contained a large number of the family group *Chironomidae* (non-biting midge).

Macroinvertebrate samples collected at Loch Pàiteag across three survey locations produced twenty-eight family groups. The loch was deemed "Moderate" to "Good" for BMWP score across the three survey locations. WHPT scores ranged from 43.7 (K_L5) – 86.6 (K_L6). Community Conservation Index (CCI) scores for the Loch Pàiteag survey locations ranged from low conservation value to *moderate conservation value*. The taxa collected were mainly generalists with the most abundant family group being that of *Chironomidae* (non-biting midge). In addition, the samples also contained an abundance of *Lymnaeidae* (common wandering snail), *Corixidae* (water boatman) and the family group *Daphniidae* (water fleas).

Macroinvertebrate samples collected from the Loch Ness shoreline across three survey locations produced twenty-one groups at the time of sampling. Survey locations K_L12 and K_L13 were deemed "Moderate" and K_L14 was deemed "Good" for BMWP score. WHPT scores ranged from 51.4 (K_L12) – 96.4 (K_L14). Community Conservation Index (CCI) scores for the Loch Ness survey locations were all deemed of *low conservation value.* The most abundant family group present was the *Chironomidae* (non-biting midge). The second largest group to be collected was *Leuctridae* (stoneflies), with the species *Leuctra hippopus* in abundance.

The samples collected from Lochan a' Choin Uire collected across three survey locations revealed twenty-seven family groups. Survey locations K_L8 and K_L10 were deemed "Good" and K_L9 was deemed "Moderate" for BMWP score. WHPT scores ranged from 43.2 (K_L9) – 92.6 (K_L10). Community Conservation Index (CCI) scores for the Lochan a' Choin Uire survey locations were deemed of *low conservation value* to *moderate conservation value*.

As with the results from Loch Kemp, Loch Pàiteag and Loch Ness Shoreline, the family of Oligochaeta were present in abundance. However, the most abundant family groups were found to be *Corixidae* (water boatmen) and *Gammaridae* (amphipod crustacean). Additionally, *Daphniidae* (water fleas) and *Lymnaeidae* (common wandering snail) were also found in large abundances. The large abundance of *Oligochaeta* is likely due to the high amount of organic matter / mud present with Lochan a' Choin Uire.

Loch Cluanie showed there being a low species abundance present during the time of the survey with only nine family groups present. The loch was deemed "Moderate" for BMWP score. Community Conservation Index (CCI) score for Loch Cluanie was deemed of *low conservation value*. The largest group collected were from the family *Gerridae* (Pond Skaters). Additionally, *Coenagrionidae* (narrow winged damselflies), were the second most abundant family group collected, with both *Coengrion puella and Pyrrhosoma nymphula* present.

Of the species recorded, they were common and widespread taxa, typical of a range of habitat types. Within the samples collected, the species composition was that of marginal and lentic environments.

Chironomidae are responsible for most of the richness and abundance of aquatic communities, especially in naturally poor environments and are generally considered a pollution resistant group (Molineri *et al.*, 2020). In biomonitoring, a rather impoverished benthic community, dominated by this family, is generally attributed to bad water quality (Raunio *et al.*, 2007). This is reflected in biotic indices such as the WHPT (Walley Hawkes Paisley Trigg) biotic index which produces low scores and even negative scores based on their weighted abundance within a sample. However, this was not the case within the samples collected, which were generally more diverse. Larvae are often the dominant insects in the profundal and sublittoral zones of lochs.

Aquatic oligochaetes are benthic dwellers, occupying the sediments and decaying organic matter of most river and loch habitats, where they play a substantial eukaryotic role in decomposition. Most of these worms are

adapted to live in sediments ranging from sand to mud. They can be found in pockets of such sediments in stony habitats as well as in lowland rivers, lochs, and ponds where soft substrates are the norm. In biotic indices, this family scores relatively low when looking at weighted abundance and can produce negative scores if high abundances are contained within a sample, an indication that the family are also tolerant of pollution.

Species such as *Sericostoma personatum* are widespread throughout the UK and lake shores exposed to wave action with stony substrate (Elliot, 1969). The Small Silver Sedge (*Lepidostoma hirtum*) a species of caddisfly was recorded and is widespread in the north of the UK within habitats such as lakes with stony substrates. *Caenis luctuosa* is a species of small square-gilled mayfly which frequents margins of rivers and loch shores in the UK.

No red data book species (i.e. rare, vulnerable or endangered) were noted from the loch sampling conducted. Of the species recorded, they were predominantly common and widespread taxa, typical of a range of habitat types.

Riverine Sampling

In total 13 riverine survey locations were sampled which were undertaken in surrounding tributaries both in and outflowing to Loch Kemp (Allt Paiteag, Allt an t-sluichd and Allt Leachd Gowerie) and adjacent tributaries of Loch Ness which could be impacted by the Proposed Development (Allt a' Chinn Mhonaich). BMWP scores for riverine samples ranged from "Poor" (K_R2, K_R4, K_R8) to "Moderate" (K_R1, K_R3, K_R6, K_R7, K_R12) to "Good" (K_R5, K_R9, K_R10, K_R11, K_R13). This was reflected in the WHPT scores, which ranged from 29.7 (K_R8) to 109.9 (K_R10).

Community Conservation Index (CCI) scores for the riverine survey locations ranged from *low conservation value* (K_R13) to *moderate conservation value* (K_R2, K_R4, K_R6, K_R7, K_R8, K_R9) *to fairly high conservation value* (K_R1, K_R5, K_R10, K_R11, K_R12) to *high conservation value* (K_R3). High conservation value scores were in part due to the taxa list being so small, which skewed the CCI to a higher conservation value.

The most common and abundant family group present were *Oligochaeta* and *Chironomidae*. Oligochaeta can tolerate high silt concentrations and are tolerant of low dissolved oxygen levels which is a characteristic of deep silted environments. *Chironomidae* larvae require better oxygenated water, though they also exhibit a range of tolerances to pollution. They are more diverse in terms of substrate preference and can be found in a wider variety of aquatic environments. *Leuctridae* and *Nemouridae* (stoneflies) family groups were abundant across all riverine sample locations. These provide a dietary source for salmonid fish such as brown trout (*Salmo trutta*) which are present within watercourses across the Site. A diverse range of stonefly species was particularly prevalent at survey locations K_R10, K_R11 and K_R12 on the Allt an t-Sluichd and Allt Paiteag, where nine different taxa were recorded.

Samples collected were indicative of the species composition, which is typical of upland burns, with predatory caseless caddisfly species such as *Lepidostoma hirtum* noted along with stonefly families being common in small flowing and oxygen rich upland burns.

No red data book species (i.e. rare, vulnerable or endangered) were noted from the riverine sampling conducted. Of the species recorded, they were predominantly common and widespread taxa, typical of a range of habitat types.

Conclusion

Macroinvertebrate results from surveys conducted were fairly uniform throughout all survey locations. No red data book species were listed, (i.e. rare, vulnerable or endangered).

Both family groups *Oligochaeta* and *Chironomidae* were found in high abundance across the majority of sites. This large abundance of *Oligochaeta* is likely due to the high amount of organic silt present across the survey locations, especially within large areas of loch bed. Of the species recorded, they were common and wide-spread taxa, typical of a range of habitat types.

Appendix A – Riverine and Loch Macroinvertebrate Survey Locations & BMWP Scores

Loch Kemp	o Storage
Figure	e 5.0
Riverine and Loch N	Macroinvertebrates
ological Monitoring W	Vorking Party (BMWP)
Scor	res
acroinvertebrate I Very good biol Good biologica Moderate biolo Poor biological Very poor biolo L = Loch R = Riverine	BMWP Score ogical quality al quality ogical quality l quality ogical quality
Scale @	A3: 1:13,500
0 25	0 500 m
© Crown copyright and	database rights 2024 OS
AC0000848283. Supplie	d by: ukmapcentre.com
GAVIA	Date: 16-09-2024 Prepared By: DM Reviewed By: GH Approved By: GH

Appendix B

Loch Macroinvertebrate Taxa (Species) List

			K_L1	K_L2	K_L3	K_L4	K_L5	K_L6	K_L7	K_L8	K_L9	K_L10	K_L12	K_L13	K_L14	K_L15
	TAXA LIST		04/08/2022	04/08/2022	04/08/2022	23/09/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	29/07/2022	28/07/2022	28/07/2022	04/08/2022
Order	Family	Taxa Name	Abundance													
AMPHIPODA	GAMMARIDAE	Gammarus sp.					1					39	1			
BIVALVIA	SPHAERIIDAE	Sphaeriidae							26	2		1				
COLEOPTERA	DRYOPIDAE	Dryopidae								2						
COLEOPTERA	DYTISCIDAE	Dytiscus marginalis														1
COLEOPTERA	DYTISCIDAE	Nebrioporus elegans					1	1								
COLEOPTERA	ELMIDAE	Elmis aenea		2	2	2			1				2	1		
COLEOPTERA	ELMIDAE	Esolus parallelepipedus							1							
COLEOPTERA	ELMIDAE	Limnius volckmari			16									4	4	
COLEOPTERA	ELMIDAE	Oulimnius sp.		1					4			1				
COLEOPTERA	GYRINIDAE	Gyrinidae		1							1					
COLEOPTERA	HALIPLIDAE	Brychius elevatus			1			1								
COLEOPTERA	HYDROPHILIDAE	Hydrophilidae												1		
DIPLOSTRACA	DAPHNIIDAE	Daphnia sp.						31		34						
DIPTERA	CERATOPOGONIDAE	Ceratopogonidae				3		2							2	
DIPTERA	CHIRONOMIDAE	Chironomidae	21	1	2	8	31	29	11	3	3	23	15	2	42	2
DIPTERA	MUSCIDAE	Muscidae										1				
DIPTERA	PEDICIIDAE	Dicranota sp.				1										
DIPTERA	PSYCHODIDAE	Psychodidae		1	2											
DIPTERA	TIPULIDAE	Tipula sp.			1											
EPHEMEROPTERA	CAENIDAE	Caenis horaria			2											
EPHEMEROPTERA	CAENIDAE	Caenis luctuosa/macrura	4					2	21			2				
EPHEMEROPTERA	EPHMERELLIDAE	Serratella ignita													15	
EPHEMEROPTERA	HEPTAGENIIDAE	Ecdyonurus sp.			8									16	7	
EPHEMEROPTERA	SIPHLONURIDAE	Siphlonurus lacustris						6		2						
GASTROPODA	LYMNAEIDAE	Ampullaceana balthica	3	13	7				34	12	14	3			1	
GORDIOIDA	N/A	Nematomorpha												1		
HEMIPTERA	CORIXIDAE	Corixidae	41				2	19	13	15	13	3				2
HEMIPTERA	CORIXIDAE	Sigara nigrolineata							5	1	9					
HEMIPTERA	CORIXIDAE	Sigara sp.	9				1	1	9	1	4					
HEMIPTERA	GERRIDAE	Gerridae							1		1					4
HEMIPTERA	GERRIDAE	Gerris lacustris														1
HEMIPTERA	NOTONECTIDAE	Notonecta sp.														1
HEMIPTERA	VELIIDAE	Velia caprai							12		2					
HEMIPTERA	VELIIDAE	Velia sp.					4		4		5					
HIRUDINEA	GLOSSIPONIIDAE	Helobdella stagnalis	4						1		-	8				
ISOPODA	ASELLIDAE	Asellus aquaticus					2		12			-	9			
MEGALOPTERA	SIALIDAE	Sialis lutaria	1				-		1				-			
ODONATA	AESHNIDAE	Aeshnidae								3						1
ODONATA	COENAGRIONIDAE	Coenagrionidae	23				3	11		5						
ODONATA	COENAGRIONIDAE	Coenagrion puella	1	3			1	1	2	7		1				3
ODONATA	COENAGRIONIDAE	Coenagrion sp.	-		1	3	_	_	_				1		<u> </u>	
ODONATA	COENAGRIONIDAF	Pvrrhosoma nymnhula								1						1
ODONATA	CORDULEGASTRIDAE	Cordulegaster boltonii	1							1						-
ODONATA	LIBELLULIDAE	Libellulidae	_						1		1					2
OLIGOCHAETA	N/A	Oligochaeta	7	2	32	21		1	-	1	19	8	7	19	13	-
PLECOPTERA	CHLOROPERLIDAE	Chloroperlidae	1	_				-		-						
PLECOPTERA	CHLOROPERI IDAE	Siphonoperla torrentium	-							1					1	
L				1		1		l	l	1	l		1	1	-	1

PLECOPTERA	LEUCTRIDAE	Leuctra hippopus	2	2	12			2	4	2		6	4	22	17	
PLECOPTERA	LEUCTRIDAE	Leuctra sp.			13			5						6	5	
PLECOPTERA	NEMOURIDAE	Amphinemura sp.				6										
PLECOPTERA	NEMOURIDAE	Nemoura avicularis				62										
PLECOPTERA	NEMOURIDAE	Nemoura sp.		7		19		9		1			4		1	
TRICHOPTERA	HYDROPSCYHIDAE	Hydropsyche siltalai				5										
TRICHOPTERA	HYDROPSCYHIDAE	Hydropsyche sp.				9										
TRICHOPTERA	HYDROPTILIDAE	Hydroptila sp.		1	13								1	3	34	
TRICHOPTERA	LEPIDOSTOMATIDAE	Lepidostoma hirtum		6		4		5				2		1		1
TRICHOPTERA	LEPTOCERIDAE	Mystacides sp.					2		1	1		1				
TRICHOPTERA	LEPTOCERIDAE	Oecetis sp.													1	
TRICHOPTERA	LEPTOCERIDAE	Triaenodes bicolor								5						
TRICHOPTERA	LIMNEPHILIDAE	Halesus radiatus	1									1				
TRICHOPTERA	LIMNEPHILIDAE	Limnephilidae	1	2	1	4	5	2	9	2	8	1		1		1
TRICHOPTERA	LIMNEPHILIDAE	Potamophylax sp.		1												
TRICHOPTERA	PHYRGANAEIDAE	Agrypnia sp.				1	6		7		3					
TRICHOPTERA	POLYCENTROPODIDAE	Plectrocnemia conspersa				3										
TRICHOPTERA	POLYCENTROPODIDAE	Plectrocnemia sp.				1										
TRICHOPTERA	POLYCENTROPODIDAE	Polycentropodidae				2										
TRICHOPTERA	POLYCENTROPODIDAE	Polycentropus flavomaculatus			1							1			1	
TRICHOPTERA	POLYCENTROPODIDAE	Polycentropus sp.										1				
TRICHOPTERA	SERICOSTOMATIDAE	Sericostoma personatum	9	4	4	8		2				3	3		19	
TROMBIDIFORMES	N/A	Hydracarina		3									2			
		Total No. of Taxa	16	16	16	18	12	18	22	18	13	19	10	12	15	12
		Total Abundance	129	50	117	162	59	130	180	99	83	106	48	77	163	20
		Sample Comments	N/A													

Appendix C

Riverine Macroinvertebrate Taxa (Species) List

			V D1	K D2	K D2	K D4		K DC	V D7	K DQ		V D10	V D11	V D12	V D12
	ταχα	LIST	K_KI	K_KZ	к_кз	К_К4	К_КЭ	К_КО	К_К/	К_КО	К_К9	K_KIU	K_KII	K_KIZ	K_KIS
			22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022
Order	Family	Taxa Name	Abundance												
AMPHIPODA	GAMMARIDAE	Gammarus pulex/fossarum agg.	12			[[[16
COLEOPTERA	DRYOPIDAE	Dryops sp.		1											
COLEOPTERA	DYTISCIDAE	Agabus/Ilybius sp.					1						3	3	
COLEOPTERA	ELMIDAE	Elmis aenea				6					17	41	10	80	
COLEOPTERA	ELMIDAE	Esolus parallelepipedus									1	2			
COLEOPTERA	ELMIDAE	Limnius volckmari					6				16	59		51	
COLEOPTERA	ELMIDAE	Oulimnius tuberculatus												1	
COLEOPTERA	HELOPHORIDAE	Helophorus minutus						1					1		1
COLEOPTERA	HYDRAENIDAE	, Hvdraena riparia					1								
COLEOPTERA	HYDRAENIDAE	Hydraena riparia group			1										
COLEOPTERA	HYDROPHILIDAE	Anacaena globulus											1		
COLEOPTERA	SCIRTIDAE	Elodes sp.			4				3			26			
DIPTERA	CERATOPOGONIDAE	Ceratopogonidae		1	2	1			-	1		-	1	2	
DIPTERA	CHIRONOMIDAE	Chironomidae	4	16	66	2	32	56	3	2	17	103	51	23	51
DIPTERA	EMPIDIDAE	Empididae				_			-					1	
DIPTERA	PEDICIIDAE	Dicranota sp.									2			5	
DIPTERA	SIMULTIDAE	Simulium aureum aroun			7									4	
DIPTERA	SIMULIIDAE	Simulium sn.			27		9					5	12		17
DIPTERA		Prionocera sp.			2							<u> </u>			
EPHMEROP-					-										
TERA	AMELETIDAE	Ameletus inopinatus											1		
EPHMEROP-															
TERA	BAETIDAE	Baetis niger					1								
EPHMEROP-															
TERA	BAETIDAE	Baetis rhodani/atlanticus agg.									10	21	9		3
		Cappie rivularum						1							
	CAENIDAE	Caeriis Tivuloi um						L							
TERA	EPHEMERELLIDAE	Serratella ignita									19				
EPHMEROP-															
TERA	HEPTAGENIIDAE	Ecdyonurus sp.			1	1			1		5				
EPHMEROP-															
TERA	LEPTOPHLEBIIDAE	Habrophlebia fusca										2			10
EPHMEROP-															
TERA	LEPTOPHLEBIIDAE	Paraleptophlebia sp.					2					3			9
GASTROPODA	LYMNAEIDAE	Stagnicola palustris/fuscus/corvus agg.						2							
HEMIPTERA	VELIIDAE	Velia caprai										4	2		
HEMIPTERA	VELIIDAE	Velia sp.										2			
HIRUDINEA	GLOSSIPHONIIDAE	Helobdella stagnalis						9							
MEGALOPTERA	SIALIDAE	Sialis fuliginosa	7								1				
MEGALOPTERA	SIALIDAE	Sialis lutaria								11	14	4			6
ODONATA	COENAGRIONIDAE	Coenagrion sp.													
ODONATA	CORDULEGASTRIDAE	Cordulegaster boltonii	1						1		11				
OLIGOCHAETA	N/A	Oligochaeta	2	1	12	1	3	21	5	4	52	5	3	1	11
PLECOPTERA	LEUCTRIDAE	Leuctra hippopus	3	1	8	3	12	7		1	12	21	17	17	2
PLECOPTERA	LEUCTRIDAE	Leuctra inermis	2					1		-	9	2	2	4	5
PLECOPTERA	LEUCTRIDAE	Leuctra sp.	13	3	76	3	9	11		3	19	9	13	103	21
PLECOPTERA	NEMOURIDAE	Amphinemura sp.				-				-		3	27	24	
PLECOPTERA	NEMOURIDAE	Amphinemura sulcicollis	1									7	5	19	
	······································	,		1		1	1		1	1	1		-		

PLECOPTERA	NEMOURIDAE	Nemoura avicularis										3	17	10	
PLECOPTERA	NEMOURIDAE	Nemoura sp.			17			8				15	58	70	
PLECOPTERA	NEMOURIDAE	Protonemura meyeri			31		3					22	8	5	
PLECOPTERA	NEMOURIDAE	Protonemura sp.			74		4					34	31	39	
PLECOPTERA	PERLODIDAE	Dinocras cephalotes	2						7						
PLECOPTERA	PERLODIDAE	Isoperla grammatica					1				1				1
TRICHOPTERA	HYDROPTILIDAE	Hydroptila sp.						1							4
TRICHOPTERA	HYDROPYSCHIDAE	Diplectrona felix						6							
TRICHOPTERA	HYDROPYSCHIDAE	Hydropsyche pellucidula								1	12				
TRICHOPTERA	HYDROPYSCHIDAE	Hydropsyche siltalai						4	1		9	2		2	
TRICHOPTERA	HYDROPYSCHIDAE	Hydropsyche sp.						3			8				1
TRICHOPTERA	LEPIDOSTOMATIDAE	Lepidostoma hirtum					1					8			
TRICHOPTERA	LIMNEPHILIDAE	Limnephilidae	5		14		2		3		4	22	5	2	
TRICHOPTERA	LIMNEPHILIDAE	Potamophylax cingulatus									2	5			
TRICHOPTERA	LIMNEPHILIDAE	Potamophylax sp.							2		2	7	2		
TRICHOPTERA	ODONTOCERIDAE	Odontocerum albicorne	1		1				1			1			
TRICHOPTERA	PHRYGANEIDAE	Agrypnia sp.													
	POLYCENTROPODI-														
TRICHOPTERA	DAE	Plectrocnemia conspersa		1											2
	POLYCENTROPODI-														
TRICHOPTERA	DAE	Plectrocnemia sp.		2							1				
	POLYCENTROPODI-														
TRICHOPTERA	DAE	Polycentropodidae		3											7
	POLYCENTROPODI-														
TRICHOPTERA	DAE	Polycentropus sp.									1	1			2
TRICHOPTERA	SERICOSTOMATIDAE	Sericostoma personatum				1			2		3		1		1
		Total No. of Taxa	10	9	16	8	15	14	10	7	25	29	23	21	19
		Total Abundance	51	29	343	18	87	131	28	23	248	439	280	466	170
	Sample Comments			N/A											